今天博考网小编为大家带来了高一荒废 求大神帮我整理下二次不等式和二次函数的知识点 我是单招 书上东西浅 好多知识都没(我想找<<北京联合大学特殊教育学院为残疾人单考单招复习考试大纲>>的内容),希望能帮助到大家,一起来看看吧!
本文目录一览:

高一荒废 求大神帮我整理下二次不等式和二次函数的知识点 我是单招 书上东西浅 好多知识都没
因为函数f(x)在整个实数轴上有定义,则分母k*x^2+4kx+3 (a=k,b=4k,c=3) 没有实根,即判别式 b^2-4ac<0
这样就是 16k^2-12k=4k(4k-3)<0.
这个二次多项式<0, 两个因子异号,即一个正,一个负。
所以,若 k<0,则 4k-3>0, k>3/4,这不可能;
若k>0,则 4k-3<0, k<3/4.
可见,解为 0<k<3/4.

我想找<<北京联合大学特殊教育学院为残疾人单考单招复习考试大纲>>的内容
以下是数学的考纲、我这里只有物理和数学的、找了好久才找到。希望网友们分享一下
北京联合大学特殊教育学院
残疾人入学单考单招考试说明(数学)(视障生)
Ⅰ.考试性质
北京联合大学特殊教育学院单独招生单独考试是由合格的高中毕业残疾考生和具有同等学力的残疾考生参加的选拔性考试。学院按已确定的招生计划,根据考生的成绩,择优录取。因此,此高考应有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ.考试内容
命题是在符合视障生的实际学习能力前提下,进一步体现国家教育部2003年制定的《数学课程标准》的评价理念,引导高中数学教学,改善视障生的数学学习方式,有效地评价学生的数学学习状况。
数学科的考试,重点考察中学数学基础知识、基本技能、基本思想和方法,逻辑思维能力、运算能力、空间想象能力、分析和解决问题的能力以及视障生进入高校继续学习的潜能。 按照“考查基础知识的同时,注重考查能力”的原则,确立以视障生实际能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养。
一、考核目标与要求
(一)考试内容的知识要求、能力要求和个性品质要求
1. 知识要求
知识是指《数学课程标准》所规定的部分教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法。
对知识的要求,依次为了解、理解、掌握、综合运用四个层次。
(1)了解:对所列知识内容有初步的认识,会在有关的问题中进行识别和直接应用。
(2)理解:对所列知识内容有理性的认识,能够解释、举例或变形、推断,并能利用所列知识解决简单问题。
(3)掌握:对所列知识内容有较深刻的理性的认识,形成技能,并能利用所列知识解决有关问题。
(4)综合运用:系统地把握知识的内在联系,并能运用相关知识分析、解决比较综合的问题。
2. 能力要求
能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。
(1)思维能力:会对问题或资料进行戏察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。
(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
运算能力是思维能力和运算技能的结合。运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等。运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。
(3)空间想象能力:根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。
空间想象能力是对空间形式的观察、分析、抽象的能力。主要表现为识图、画图和对图形的想象能力。识图是指观察、研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志。
(4)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。
创新意识是理性思维的高层次表现。对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强。
3. 个性品质要求
个性品质是指考生个体的情感、态度和价值观。要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
(二)考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系。要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架。
1.对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。
2.对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。
3.对数学能力的考查,强调“以盲生实际能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料。侧重体现对知识的理解和应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。
4.对实践能力的考查主要采用解决应用问题的形式。命题时一要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合我国盲人中学数学教学的实际,考虑视障生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平。
数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。
二、考试范围与要求
(一) 集合、简易逻辑
1.考试内容:
集合。子集。补集。交集。并集。逻辑联结词。四种命题。充分条件和必要条件。
2.考试要求:
(1)理解集合、子集、补集、交集、并集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义。理解四种命题及其相互关系。理解充分条件、必要条件及充要条件的意义。
(二) 函数
1.考试内容:
映射。函数。函数的单调性。奇偶性。反函数。互为反函数的函数图像间的关系。指数概念的扩充。有理指数幂的运算性质。指数函数。对数。对数的运算性质。对数函数。函数的应用。
2.考试要求:
(1)了解映射的概念,理解函数的概念。
(2)了解函数单调性、奇偶性的概念。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质。掌握对数函数的概念和性质,了解对数的图像。
(三) 不等式
1.考试内容:
不等式。不等式的基本性质。不等式的证明。不等式的解法。含绝对值的不等式。
2.考试要求:
(1)理解不等式的性质。
(2)理解分析法、综合法、比较法证明简单的不等式。
(3)掌握简单不等式的解法。
(三) 三角函数
1.考试内容:
角的概念的推广、弧度制。任意角的三角函数。单位圆中的三角函数线。同角三角函数的基本关系式。正弦、余弦的诱导公式。两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切。正弦函数、余弦函数的图像和性质。周期函数。函数y=Asin(ωx+)的图像。正切函数的图像和性质。已知三角函数求角。正弦定理。余弦定理。斜三角形解法。
2.考试要求:
(1)理解任意角的概念、弧度的意义。能正确地进行弧度与角度的换算。
(2)理解任意角的正弦、余弦、正切的定义。了解余切、正割、余割的定义,掌握同角三角函数的基本关系式。掌握正弦、余弦的诱导公式。了解周期函数与最小正周期的意义。
(3)掌握两角和与两角差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。
(5)了解正弦函数、余弦函数、正切函数的图像,理解正弦函数、余弦函数、正切函数的性质,了解A、、 的物理意义。
(6)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。
(五) 数列
1.考试内容:
数列。等差数列及其通项公式。等差数列前n项和公式。等比数列及其通项公式。等比数列前n项和公式。
2.考试要求:
(1)理解数列的概念,了解数列通项公式的意义。了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
(六) 直线和圆的方程(约占13%)
1.考试内容:
直线的倾斜角和斜率。直线方程的点斜式和两点式。直线方程的一般式。 两条直线平行与垂直的条件。两条直线的交角。点到直线的距离。曲线与方程的概念。由已知条件列出曲线方程。圆的标准方程和一般方程。圆的参数方程。
2.考试要求:
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式。能够根据直线的方程判断两条直线的位置关系。
(3)掌握圆的标准方程和一般方程,了解参数方程的概念,了解圆的参数方程。
(七) 圆锥曲线方程(约占7%)
1.考试内容:
椭圆及其标准方程。椭圆的简单几何性质。椭圆的参数方程。双曲线及其标准方程。双曲线的简单几何性质。抛物线及其标准方程。抛物线的简单几何性质。
2.考试要求:
(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)了解圆锥曲线的初步应用。
(八) 立体几何基础(约占7%)
1.考试内容:
平面及其基本性质。平行直线。对应边分别平行的角。异面直线所成的角。异面直线的公垂线。异面直线的距离。直线和平面平行的判定与性质。直线和平面垂直的判定与性质。点到平面的距离。斜线在平面上的射影。直线和平面所成的角。三垂线定理及其逆定理。平行平面的判定与性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定与性质。多面体。正多面体。棱柱。棱锥。球。
2.考试要求:
(1)理解平面的基本性质。
(2)理解两条直线平行与垂直的判定定理和性质定理。理解两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离。
(3)理解直线和平面平行的判定定理和性质定理。理解直线和平面垂直的判定定理和性质定理。了解斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念。理解三垂线定理及其逆定理。
(4)理解两个平面平行的判定定理和性质定理。理解二面角、二面角的平面角、两个平行平面间的距离的概念。理解两个平面垂直的判定定理和性质定理。
(5)了解多面体、凸多面体的概念,了解正多面体的概念。
(6)了解棱柱的概念,理解棱柱的性质。
(7)了解棱锥的概念,理解正棱锥的性质。
(8)了解球的概念,理解球的性质,理解球的表面积公式、体积公式。
(九) 排列、组合、二项式定理
1.考试内容:
分类计数原理与分步计数原理。排列。排列数公式。组合。组合数公式。组合数的两个性质。二项式定理。二项展开式的性质。
2.考试要求:
(1)理解分类计数原理与分步计数原理。
(2)了解排列的意义,理解排列数计算公式。
(3)了解组合的意义,理解组合数计算公式和组合数的性质。
(4)理解二项式定理和二项展开式的性质。
Ⅲ.考试形式与试卷结构
一、答卷方式:闭卷、笔试。
二、考试时间:150分钟
三、卷面赋分:试卷总分150分,其中单项选择题、填空题:约占110分,解答题:约占40分。
四、题型:
试卷包括选择题、填空题和解答题等题型。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答题应写出文字说明、演算步骤或推证过程。
五、试卷难度
试题难易比例为:基本题约80%;提高题约20%。
六、组卷原则
试题主要按题型、难度进行排列。选择题在前,非选择题在后。同一题型试题尽量按由易到难的顺序排列。
北京联合大学特殊教育学院
残疾人入学单考单招考试说明(理化物理部分)
(针灸推拿学专业)
Ⅰ.考试性质
北京联合大学特殊教育学院单独招生单独考试是由合格的高中毕业残疾考生和具有同等学力的残疾考生参加的选拔性考试。学院按已确定的招生计划,根据考生的成绩,择优录取。因此,此高考应有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ.考试内容
根据我院对残疾新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中课程标准(实验)》,确定我院物理科考试内容。考试内容包括知识和能力两个方面。
高考物理试题着重考查考生知识、能力和科学素养,注重理论联系实际,注重科学技术和社会、经济发展的联系,注意物理知识在生产、生活等方面的广泛应用,以有利于我院选拔新生,并有利于激发考生学习科学的兴趣,培养实事求是的态度,形成正确的价值观,促进“知识与技能”、“过程与方法”、“情感态度与价值观”三维课程培养目标的实现。
一、考核目标与要求
高考物理在考查知识的同时注重考查能力,并把对能力的考查放在首要位置。通过考核知识及其运用来鉴别考生能力的高低,但不把某些知识与某种能力简单地对应起来。
目前,高考物理科要考核的能力主要包括以下几个方面:
(一)理解能力 理解物理概念、物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用;能够清楚认识概念和规律的表达形式(包括文字表述和数学表述);能够鉴别关于概念和规律的似是而非的说法;理解相关知识的区别和联系。
(二)推理能力 能够根据已知的知识和物理事实、条件,对物理问题进行逻辑推理和论证,得出正确的结论或做出正确的判断,并能把推理过程正确地表达出来。
(三)分析综合能力 能够独立地对所遇的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出其中起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,运用物理知识综合解决所遇到的问题。
(四)应用数学处理物理问题的能力 能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图像进行简单的表达、分析。
(五)实验能力 对物理1、物理2、选修3-1三个模块中的实验,能明确实验目的,能理解实验原理和方法,会分析实验现象,会处理实验数据,并得出结论,对结论进行分析和评价。
这五个方面的能力要求不是孤立的,着重对某一种能力进行考查的同时在不同程度上也考查了与之相关的能力。同时,在应用某种能力处理或解决具体问题的过程中也伴随着发现问题、提出问题的过程。因而高考对考生发现问题、提出问题等探究能力的考查渗透在以上各种能力的考查中。
二、考试范围与要求
要考查的物理知识包括力学、电磁学部分。考虑到课程标准中物理知识的安排和我院录取新生的基本要求,考试内容有物理1、物理2、选修3-1三个模块。
对各部分知识内容要求掌握的程度,用数字Ⅰ、Ⅱ表示。Ⅰ、Ⅱ的含义如下:
Ⅰ.对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,与课程标准中“了解”和“认识”相当。
Ⅱ.对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,与课程标准中“理解”和“应用”相当。
具体模块、主题、内容及要求见下表:
模块
主题
内容
要求
说明
物理1
(必修1)
质点的直线运动
参考系,质点
Ⅰ
位移、速度和加速度
Ⅱ
匀变速直线运动及其公式、图像
Ⅱ
相互作用与牛顿运动规律
滑动摩擦力、动摩擦因数、静摩擦力
Ⅰ
1. 互成角度的力的合成和分解,主要考察对作图法的理解,在计算方面,只要求会应用直角三角形的知识求解。应懂得矢量有不同于标量的运算规则。
2. 在牛顿运动定律中,要考察综合运用运动学和动力学知识解决力学问题的基本思路,但不处理连接体的问题。
3. 物体的受力分析只要求处理受力情况比较简单的问题。
形变、弹性、胡克定律
Ⅰ
矢量和标量
Ⅰ
力的合成和分解
Ⅱ
共点力的平衡
Ⅱ
牛顿运动定律、牛顿定律的应用
Ⅱ
超重和失重
Ⅰ
物理2
(必修2)
机械能
功和功率
Ⅱ
1. 要懂得功是能量转化的量度。
2. 在处理功和能的关系时,可不用负功的说法。
3. 弹性势能,只要求定性了解。
动能和动能定理
Ⅱ
重力做功与重力势能
Ⅱ
功能关系、机械能守恒定律及其应用
Ⅱ
抛体运动与圆周运动
运动的合成和分解
Ⅱ
1. 斜抛运动只作定性要求。
2. 只要求正确使用向心加速度公式a
n
=v
2
/r=rω
2
,不要求知道公式的推导。
抛体运动
Ⅱ
匀速圆周运动、角速度、线速度、向心加速度
Ⅰ
匀速圆周运动的向心力
Ⅱ
离心现象
Ⅰ
万有引力定律
万有引力定律及其应用
Ⅱ
理解万有引力定律,能够联系人类在探索天体运行规律和发展航天技术两方面取得的成果。
环绕速度
Ⅰ
第二宇宙速度和第三宇宙速度
Ⅰ
经典时空观和相对论时空观
Ⅰ
选修3-1
(理科倾向)
电场
物质的电结构、电荷守恒
Ⅰ
定量分析带电粒子在匀强电场中的运动,仅限于带电粒子垂直或平行电场方向进入匀强电场的情况。
静电现象的解释
Ⅰ
点电荷
Ⅰ
库仑定律
Ⅱ
静电场
博考网
Ⅰ
电场强度、点电荷的场强
Ⅱ
电场线
Ⅰ
电势能、电势
Ⅰ
电势差
Ⅱ
匀强电场中电势差与电场强度的关系
Ⅰ
带电粒子在匀强电场中的运动
Ⅱ
示波管
Ⅰ
常用的电容器
Ⅰ
电容器的电压、电荷量和电容的关系
Ⅰ
电路
欧姆定律
Ⅱ
电阻定律
Ⅰ
电阻的串、并联
Ⅰ
电源的电动势和内阻
Ⅱ
闭合电路的欧姆定律
Ⅰ
电功率、焦耳定律
Ⅰ
磁场
磁场、磁感应强度、磁感线
Ⅰ
1. 安培力的计算只限于电流与磁感应强度垂直的情形。
2. 洛伦兹力的计算只限于速度与磁场方向垂直的情形。
3. 定量分析带电粒子在匀强磁场中的运动,仅限于带电粒子垂直或平行磁场方向进入匀强磁场的情况。
通电直导线和通电线圈周围磁场的方向
Ⅰ
安培力、安培力的方向
Ⅰ
匀强磁场中的安培力
Ⅱ
洛伦兹力、洛伦兹力的方向
Ⅰ
洛伦兹力的公式
Ⅱ
带电粒子在匀强磁场中的运动
Ⅱ
质谱仪和回旋加速器
Ⅰ
Ⅲ.考试形式及试卷结构
一、答卷方式
1. 物理与化学(理化)同场考试。
2. 闭卷、笔试。
二、考试时间
理化(物理与化学)考试时间共计150分钟。
三、卷面赋分
理化(物理与化学)满分150分,其中物理在理化中所占比例为40%,即物理满分60分。
四、题型
试卷一般包括单项选择题、多项选择题、填空题、计算题。
五、内容比例
试卷中各模块知识占分比例为:必修模块物理1、物理2各约占35%,选修模块3-1约占30%。
六、试卷难度
试题难易比例为:基本题约80%;提高题约20%。
七、组卷原则
试题主要按题型、难度进行排列。选择题在前,非选择题在后。同一题型试题尽量按由易到难的顺序排列。

请给我一些初高中衔接部分的数学方程(组)和不等式(组)试题和一写化简题,谢谢
关于x的方程x^2+(2a^2+a-根号下2a^2+a+6)x+a=0的两实数根之和互为相反数则a?
根号3x^2-5x-12 - 根号2x^2-11x+15 =x-3
根号下x^2+(y+1)^2=根号10
根号下(3-x)^2+y^2=根号20
已知实数x,y满足关系式1/2(x+y+5)=2√x+1,+ √y-1,求X与Y 的值
X^4*Y^4/X^4+y^4+6X^2*Y^2+4X^3*Y+4XY^3=________________
问题补充:已知x=2/(2+√3-√5),y=2/(2+√3+√5)
x+1-2|x-2||-|x+1|=18问x等于多少?
1、|2x-1|-|x-2|=9
2、|x|+|x+1|-|3-x|=2x+4
3、|2x+3|+|x-1|=|3x+2|
4、x、y同时满足
|y|-y=0
|x-3|+x-3=0
|y-x|+y-x=0
1.方程3(|x|-1)=|x|/5+1的解是什么? 方程|3x-1|=|2x+1|的解是什么? 2.解方程 <1>||3x-5|+4|=8 <2>|4x-3|-2=3x+4 (注:“| |”表示绝对值 2.<2>意思是3x-5的绝对值再加上4,所得结果的绝对值。。。)
1. |2x-1|+|x-2|=|x+1|
2. 求方程|x-3|+|x+2|=5的整数解
x^2-xy-2y=0
y-xy=0
(1)X^2+(Y-3)^2=(X-1)^2+(4-Y)^2
(2)Y=-X^2+2X+3
x^2-2xy+3y^2=9
4x^2-5xy+6y^2=30
小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6 点,前后共经过了几秒钟?
1. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
依次连接这些点,你觉得它像什么图形?(8分)
5、计算正五边形和正十边形的每一个内角度数。(5分)
6、一个多边形的内角和等于1260 ,它是几边形?(5分)
8、按要求解答下列方程(共8分)
(1) x+2y=9 (2) 2x-y=5
3x-2y=-1 3x+4y=2
三、二元一次方程组应用(每题7分,共35分)
1、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量之比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装个两种各有多少瓶?
2、2台大收割机5台小收割机工作2小时收割小麦3。6公顷,3台大收割机和2抬小收割机5小时收割小麦8公顷,一台大收割机和一台小收割机1小时各收割小麦多少公顷?
3、A市到B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30分,从B市逆风飞往A市需要3小时20分,求飞机的平均速度和风速。
4、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?
二元一次方程组专题专练
专讲一:二元一次方程组
(一)正确理解四个基本概念
1.二元一次方程:
含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.从定义中可以看出:二元一次方程具备以下四个特征:
(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的次数最高为1,例如:像 中, 不是整式,所以 就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点.
2.二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如 , , 都是二元一次方程组,但 就不是二元一次方程组.
3.二元一次方程的一个解
适合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解.
4.二元一次方程组的解
二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解.
定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有唯一的一组解,即构成方程组的两个二元一次方程的公共解.
(二)熟练掌握两种基本方法
1.代入消元法
解方程组的基本思路是“消元”-------把“二元”转化为“一元”,其主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.其主要步骤可以概括成三句话:
(1)求关系式:用一个未知数的值去代替另一个未知数.
注意:求关系式时,应选取系数比较简单的方程进行变形.
(2)代入消元:将求得的关系式代入到另一个方程,消去其中的一个未知数,并求出另一个未知数的值.
注意:代入消元时,一定将求得的关系式代入另一个方程进行消元.
(3)回代得解:将求得的这个未知数的值代入关系式中,求出另一个未知数的值,最后写成方程解的形式.
回代得解时,应将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值,并写成方程解的形式,最后还要下结论.
2.加减消元法
通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.其主要步骤也可以概括成三句话:
(1)变换系数:将某一未知数的系数变成相等或互为相反数.
注意:变换系数时,要选取系数较为简单的未知数作为消元对象,不要漏乘方程中的某一项,特别是常数项!
(2)加减消元:就是将变形后的方程与另一个方程相加或相减,消去一个未知数.
注意:加减消元时,要将方程组中相同未知数上下对齐,以便观察是用加法还是用减法消元,并注意计算中容易错的地方,特别是符号!
(3)回代得解:
注意:回代得解时,可将求出的未知数的值回代到原来方程组中任意一个方程,从而求出另一个未知数的值,最后要写成解的形式!
总之,代入法和加减法都是解二元一次方程组最基本最常见的方法,在解方程组时,如果题目无具体要求,可选用任何一种方法,至于选择哪种方法,一定要先对系数进行认真观察分析,根据系数的具体特点,选择较为简便的方法.
(三)密切关注两种基本思想
1.消元思想:同学们在学会了代入法和加减法解二元一次方程组,首先要搞清解方程组的基本思想就是:“消元”,它的基本模式就是:二元一次方程组 一元一次方程,它的基本方法就是:代入法和加减法.通过代入或加减达到将
“二元”转化为“一元”的目的.
2.转化思想:解二元一次方程组的实质是通过消元将二元转化为一元,在这种“消元”中,渗透了化“未知”为“已知”的重要的转化思想方法.列二元一次方程组解决实际问题的实质是将实际问题转化为数学问题.
转化是一种重要的思想方法,在解题中主要体会这种思想方法的灵活应用.
(三)题型类析
专练一:
1.(06德州)已知方程组 的解为 ,则 的值为_____________.
2.(06南昌) 一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°∠2=y°,则可得到方程组为( )
A B C D
3.
专讲二:二元一次方程组的应用
(一)二元一次方程组的应用问题
1.列二元一次方程组的应用题的一般步骤
(1)审:弄清题意和题目中的数量关系;
(2)设:用字母表示题目中的一个未知数;
(3)找:找出能够表示应用题全部含义的一个相等关系;
(4)列:根据这个相等关系列出重要的代数式,从而列出方程;
(5)解:解这个所列出的方程;
(6)验:检验根是否符合实际情况;
(7)答:写出答案.
可以简记为:“审、设、找、列、解、验、答”七个字,请同学们要牢记.
2.注意实际问题中的基本数量关系及关键词
常用的数量关系有:(1)距离=速度×时间;(2)工作量=工作效率×工作时间;(3)商品的销售额=商品销售价×商品销售量;(4)商品的总销售利润=(销售价-成本价)×销售量;(5)商品售价=标价×折数(6)商品的利润率= ×100℅等等.
还要正确理解一些关键词表达的同类量之间的特殊的等量关系,如:“提前”、“超过”、“早到”、“迟到”、“几倍”、“增加了”、“相向而行”、“同向而行”等等.
3.列二元一次方程组的应用题常用策略
(1)“直接”与“间接转换:当直接设未知数不便时,转而设间接未知数来求解,反之亦然.
(2)“一元”与“多元”转换:当设一个未知数有困难时,可考虑设多个未知数求解,反之亦然.
(3)“部分”与“整体”转换:当整体设元有困难时,就考虑设其部分,反之亦然,如:数字问题.
(4)“一般”与“特殊”转换:当从一般情形入手困难时,就着眼于特殊情况,反之亦然.
(5)“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.
1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50
(21) 48x-54y=-3186
24x+y=1080
答案:x=45 y=99
(22) 36x+77y=7619
47x-y=799
答案:x=17 y=91
(23) 13x-42y=-2717
31x-y=1333
答案:x=43 y=78
(24) 28x+28y=3332
52x-y=4628
答案:x=89 y=30
(25) 62x-98y=-2564
46x-y=2024
答案:x=44 y=54
(26) 79x-76y=-4388
26x-y=832
答案:x=32 y=91
(27) 63x-40y=-821
42x-y=546
答案:x=13 y=41
(28) 69x-96y=-1209
42x+y=3822
答案:x=91 y=78
(29) 85x+67y=7338
11x+y=308
答案:x=28 y=74
(30) 78x+74y=12928
14x+y=1218
答案:x=87 y=83
(31) 39x+42y=5331
59x-y=5841
答案:x=99 y=35
(32) 29x+18y=1916
58x+y=2320
答案:x=40 y=42
(33) 40x+31y=6043
45x-y=3555
答案:x=79 y=93
(34) 47x+50y=8598
45x+y=3780
答案:x=84 y=93
(35) 45x-30y=-1455
29x-y=725
答案:x=25 y=86
(36) 11x-43y=-1361
47x+y=799
答案:x=17 y=36
(37) 33x+59y=3254
94x+y=1034
答案:x=11 y=49
(38) 89x-74y=-2735
68x+y=1020
答案:x=15 y=55
(39) 94x+71y=7517
78x+y=3822
答案:x=49 y=41
(40) 28x-62y=-4934
46x+y=552
答案:x=12 y=85
(41) 75x+43y=8472
17x-y=1394
答案:x=82 y=54
(42) 41x-38y=-1180
29x+y=1450
答案:x=50 y=85
(43) 22x-59y=824
63x+y=4725
答案:x=75 y=14
(44) 95x-56y=-401
90x+y=1530
答案:x=17 y=36
(45) 93x-52y=-852
29x+y=464
答案:x=16 y=45
(46) 93x+12y=8823
54x+y=4914
答案:x=91 y=30
(47) 21x-63y=84
20x+y=1880
答案:x=94 y=30
(48) 48x+93y=9756
38x-y=950
答案:x=25 y=92
(49) 99x-67y=4011
75x-y=5475
答案:x=73 y=48
(50) 83x+64y=9291
90x-y=3690
答案:x=41 y=92
(51) 17x+62y=3216
75x-y=7350
答案:x=98 y=25
(52) 77x+67y=2739
14x-y=364
答案:x=26 y=11
(53) 20x-68y=-4596
14x-y=924
答案:x=66 y=87
(54) 23x+87y=4110
83x-y=5727
答案:x=69 y=29
(55) 22x-38y=804
86x+y=6708
答案:x=78 y=24
(56) 20x-45y=-3520
56x+y=728
答案:x=13 y=84
(57) 46x+37y=7085
61x-y=4636
答案:x=76 y=97
(58) 17x+61y=4088
71x+y=5609
答案:x=79 y=45
(59) 51x-61y=-1907
89x-y=2314
答案:x=26 y=53
(60) 69x-98y=-2404
21x+y=1386
答案:x=66 y=71
(61) 15x-41y=754
74x-y=6956
答案:x=94 y=16
(62) 78x-55y=656
89x+y=5518
答案:x=62 y=76
(63) 29x+21y=1633
31x-y=713
答案:x=23 y=46
(64) 58x-28y=2724
35x+y=3080
答案:x=88 y=85
(65) 28x-63y=-2254
88x-y=2024
答案:x=23 y=46
(66) 43x+50y=7064
85x+y=8330
答案:x=98 y=57
(67) 58x-77y=1170
38x-y=2280
答案:x=60 y=30
(68) 92x+83y=11586
43x+y=3010
答案:x=70 y=62
(69) 99x+82y=6055
52x-y=1716
答案:x=33 y=34
(70) 15x+26y=1729
94x+y=8554
答案:x=91 y=14
(71) 64x+32y=3552
56x-y=2296
答案:x=41 y=29
(72) 94x+66y=10524
84x-y=7812
答案:x=93 y=27
(73) 65x-79y=-5815
89x+y=2314
答案:x=26 y=95
(74) 96x+54y=6216
63x-y=1953
答案:x=31 y=60
(75) 60x-44y=-352
33x-y=1452
答案:x=44 y=68
(76) 79x-45y=510
14x-y=840
答案:x=60 y=94
(77) 29x-35y=-218
59x-y=4897
答案:x=83 y=75
(78) 33x-24y=1905
30x+y=2670
答案:x=89 y=43
(79) 61x+94y=11800
93x+y=5952
答案:x=64 y=84
(80) 61x+90y=5001
48x+y=2448
答案:x=51 y=21
(81) 93x-19y=2
86x-y=1548
答案:x=18 y=88
(82) 19x-96y=-5910
30x-y=2340
答案:x=78 y=77
(83) 80x+74y=8088
96x-y=8640
答案:x=90 y=12
(84) 53x-94y=1946
45x+y=2610
答案:x=58 y=12
(85) 93x+12y=9117
28x-y=2492
答案:x=89 y=70
(86) 66x-71y=-1673
99x-y=7821
答案:x=79 y=97
(87) 43x-52y=-1742
76x+y=1976
答案:x=26 y=55
(88) 70x+35y=8295
40x+y=2920
答案:x=73 y=91
(89) 43x+82y=4757
11x+y=231
答案:x=21 y=47
(90) 12x-19y=236
95x-y=7885
答案:x=83 y=40
(91) 51x+99y=8031
71x-y=2911
答案:x=41 y=60
(92) 37x+74y=4403
69x-y=6003
答案:x=87 y=16
(93) 46x+34y=4820
71x-y=5183
答案:x=73 y=43
(94) 47x+98y=5861
55x-y=4565
答案:x=83 y=20
(95) 30x-17y=239
28x+y=1064
答案:x=38 y=53
(96) 55x-12y=4112
79x-y=7268
答案:x=92 y=79
(97) 27x-24y=-450
67x-y=3886
答案:x=58 y=84
(98) 97x+23y=8119
14x+y=966
答案:x=69 y=62
(99) 84x+53y=11275
70x+y=6790
答案:x=97 y=59
(100) 51x-97y=297
19x-y=1520
答案:x=80 y=39
以上就是博考网整理的高一荒废 求大神帮我整理下二次不等式和二次函数的知识点 我是单招 书上东西浅 好多知识都没(我想找<<北京联合大学特殊教育学院为残疾人单考单招复习考试大纲>>的内容)相关内容,想要了解更多信息,敬请查阅博考网。
免责声明:文章内容来自网络,如有侵权请及时联系删除。